


Chapter 9

Biochemical and Functional Responses

of Arabidopsis thaliana Exposed to Cadmium,

Copper and Zinc

Adriano Sofo, Antonio Scopa, Tony Remans, Jaco Vangronsveld,

and Ann Cuypers

Abstract Phytoremediation has been accepted advantageous over commonly

used civil engineering remediation methods in costs, practice and the scale at

which the processes operate. Understanding the metabolic answer and the adapta-

tion of plants towards toxic metal exposure opens the way to future phytoremediation

of contaminated sites. The majority of these metals get accumulated in plants and may

either directly or indirectly find their way into the food chain causing severe secondary

consequences. In particular, excess cadmium (Cd), copper (Cu) and zinc (Zn) are

known to induce stress effects in all plant species. However, while Cu and Zn are

normally present in different soils, and are part of or act as cofactors of many cell

macromolecules, plants have no metabolic requirement for Cd. Arabidopsis
thaliana L. is considered a model plant for many studies as its genomic sequence

was completely identified and its mechanisms in genomic, transcriptomic and

proteomic regulation are often similar to other plant species. Themolecular, biochemi-

cal, physiological and morphological characteristics of this species are strongly

affected by the exposure to Cd, Cu and Zn. The aim of this work is to give an up-

to-date overview on the recent breakthroughs in the area of responses and adaptation of

A. thaliana to Cd, Cu and Zn, three of themost commonmetals found in polluted soils,

both alone and in combination. This chapter aims to contribute to a better understand-

ing of the fundamental aspects of detoxification of metals and general responses in

phytoremediation. The numerous and easily available genetic resources developed in

A. thaliana should be extended to fast growing plant species of high biomass having

significant tolerance to metals and suitable for phytoremediation purposes.
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Abbreviations

Cd Cadmium

CKs Cytokinins

Cu Copper

GSH Reduced glutathione

IAA Indole-3-acetic acid

MTs Metallothioneins

PCS Phytochelatin synthase

PCs Phytochelatins

Zn Zinc

9.1 Introduction

Excess cadmium (Cd), copper (Cu) and zinc (Zn) are known to induce stress

effects in all plant species. However, while Cu and Zn are normally present in

different soils, and are part of or act as cofactors of many cell macromolecules

(e.g., Cu/Zn-proteins and cytochromes), plants have no metabolic requirement for

Cd. Cadmium levels in soils are generally low (an average of 0.3 mM) and, for this

reason, plants usually do not experience this metal under normal environmental

conditions. Nevertheless, Cd is efficiently absorbed by plant roots, translocated via
xylem, and compartmentalized in vacuoles, and it influences the transcription of

several genes (Vangronsveld et al. 2009; Cuypers et al. 2010).

Elements, such as Cu, Zn and Cd belong to the group of so-called ‘heavy

metals’. In small amounts, most of these elements are indispensable for many

organisms, but their increased doses induce acute or chronic poisoning. Some

environments, such as the serpentine soils, have naturally high concentrations of

metals. Moreover, mining and industrialization have also led to soils with increased

metal contents. In recent years, phytoremediation techniques have been applied on

Cd and other metals as well as on organics (Vangronsveld et al. 2009). Many

studies have been focusing on plant metal uptake and transport, their entry into

regular metabolic channels of the plant, and plant metal chelation and sequestration.

Furthermore, important responses induced by Cu, Zn and Cd, such as the synthesis

of phytochelatins (PCs) and metallothioneins (MTs), were observed in many plant

species (Kvesitadze et al. 2006).

Metals enter the plant cells from air, soil and water, but plants absorb

contaminants primarily through their roots and leaves, whose absorption differ

essentially from each other. Due to their positive charge, Cd, Zn and Cu are present

mainly as soil-bound cations or complexed in organic molecules (e.g., humic/fulvic
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acids, extracellular enzymes, aliphatic and aromatic hydrocarbons, alcohols, phenols,

amines, etc.), and so they enter the roots dissolved in water, like nutrients, and they

move towards the transport tissue (xylem) mainly along the apoplast. To a lesser

extent, Cd, Zn andCu are bound to negatively-charged dust particles, so plants interact

with these metals during their precipitation from the atmosphere when they penetrate

into leaves via the cuticle (Kvesitadze et al. 2006). Once absorbed by roots and leaves,

environmental contaminants are translocated to different plant organs by the same

physiological processes transporting nutrients.

The plant’s abilities to absorb, conjugate, compartmentalize and accumulate

metals within its cells determines the ecological detoxification potential of

a species. High biomass production, well-developed roots, and a strong defense

system are the most important overall criteria for plants to be successfully applied

in phytoremediation processes of metal contaminated soils (Kabata-Pendias and

Mukherjee 2007). Some plant species are able to accumulate high amounts of

metals in their roots and subsequently translocate them to the above-ground organs

(the so-called “phytoextraction”), eliminating in this way contaminants from

the soils, sediments and sludges. There are several plant species that not only

tolerate large quantities of metals but hyperaccumulate them. Hyperaccumulators

are defined as plants that can accumulate 10,000 mg g�1 dry weight Zn or Mn,

1,000 mg g�1 dry weight Ni, Co, As, Se, or Cu, or 100 mg g�1 dry weight Cd, and

they have gained great interest as potential sources of genes for developing plants

for phytoremediation (Hassinen et al. 2007). As hyperaccumulating plants have

extraordinary capabilities of uptake and metal tolerance, they are the best sources of

genes to be used for phytoremediation purposes. Despite the recent exploitation

of high-throughput methodologies, such as cDNA analysis and microarrays, the

overall picture of plant metal tolerance, accumulation, and translocation is far from

being complete (Hassinen et al. 2007). It is also noteworthy that other techniques

are used to remediate metal-contaminated soils, such as phytostabilization.

Arabidopsis thaliana L. (“Arabidopsis” throughout the text) is considered a

model plant for many studies as its genomic sequence was completely identified

and its mechanisms in genomic, transcriptomic and proteomic regulation are often

similar to other plant species. The molecular, biochemical, physiological and

morphological characteristics of Arabidopsis are strongly affected by the exposure

to Cd, Cu and Zn (Tan-Kristanto et al. 2003; Van Belleghem et al. 2007; Remans

et al. 2008; Smeets et al. 2009; Semane et al. 2010; Watanabe et al. 2010; Cuypers

et al. 2010) (Fig. 9.1). Furthermore, a cumulative role in toxic metal accumulation

and tolerance in this species was observed (Verbruggen et al. 2009). Arabidopsis
offers many advantages in the search for novel genes and for this reason,

many studies have been carried out in this species regarding the tolerance and

accumulation of metals other than Cd/Cu/Zn, such as iron (Duy et al. 2007; Stacey

et al. 2008), lead (Kim et al. 2006; Liu et al. 2009), caesium and strontium

(Kanter et al. 2010), aluminum (Goodwin and Sutter 2009), selenium (Zhang

et al. 2007; Dutilleul et al. 2008), uranium (Vanhoudt et al. 2008), and arsenic

(Li et al. 2006; Singh and Ma 2007), and mercurial derivatives (Bizily et al. 1999;

Li et al. 2006).
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The great importance of the studies on Arabidopsis responses to metals is

because of the fact that it belongs to the family of Brassicaceae (Cruciferae), whose

cultivated species are known to be good accumulators of toxic metals, allocating large

amounts of most toxic metals to above-ground organs. Nowadays, about 400 plant

species are known to hyperaccumulatemetals, and an important part of them belong to

the family of Brassicaceae (Pence et al. 2000; Wójcik et al. 2005a, b; van de Mortel

et al. 2006; Courbot et al. 2007; Gasic and Korban 2007; Hassinen et al. 2007;

Mijovilovich et al. 2009; Vangronsveld et al. 2009). Furthermore, many genera of

Brassicaceae (e.g., Brassica, Alyssum, Arabis, Arabidopsis, Berkheya, Bornmuellera,
Cardamine, Cochlearia, Peltaria, Pseudosempervivum, Stanleya, Streptanthus, and
Thlaspi) are well known in terms of their utility in toxic metals-remediation strategies.

In particular, the oleiferous genus Brassica includes good Cd/Cu/Zn-accumulating

species and it also has a great agronomic importance, being the third most important

source of vegetable oil in the world after palm and soybean oil. Finally, the basic

biology, ecology, population genetics and molecular evolution are often similar

among different plant species. Therefore, the wealth of functional and genomic

tools of Arabidopsis could be applied to gain insights into adaptive evolution of

ecologically important traits and genome-wide processes at the basis of metal uptake

and compartmentalization among other plant species (Clauss and Koch 2006;

Przedpełska and Wierzbicka 2007).

On this basis, the aim of this work is to give an up-to-date overview on the

recent breakthroughs in the area of responses and adaptation of Arabidopsis to Cd,

Fig. 9.1 Effects of cadmium, copper and zinc on Arabidopsis thaliana (Data from Sanità di Toppi

et al. 2003; Tan-Kristanto et al. 2003; Van Belleghem et al. 2007; Remans et al. 2008; Smeets et al.

2009; Semane et al. 2010; Watanabe et al. 2010; Cuypers et al. 2010)
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Cu and Zn, three of the most common metals found in increased concentrations in

contaminated soils, both alone and in combination. As Arabidopsis is a model plant

for many genomic, transcriptomic and proteomic studies, this chapter could be

important for a better understanding of the fundamental aspects of detoxification of

metals (in terms of tolerance and accumulation potential) and for their use in

phytoremediation approaches.

9.2 The Environmental Impact of Cadmium, Copper and Zinc

9.2.1 Cadmium

Cadmium is a major environmental contaminant that enters human food via

accumulation in crop plants (Kabata-Pendias and Mukherjee 2007), and is consid-

ered as being one of the most ecotoxic metals that exhibits adverse effects on all

biological processes in humans, animals, and plants (Cuypers et al. 2010). It is

produced mainly as a by-product in mining and refining of Zn, with uses in the

production of batteries, pigments, coatings and stabilizers. In uncontaminated soils,

its content is highly governed by soil texture and ranges from 0.22 to 0.51 mg kg�1

dry soil. In contaminated soils (>1 mg kg�1), the major sources of pollution are

atmospheric deposition and P-fertilizers. Contents of Cd in plants vary in the range

of 5–400 mg kg�1 dry matter, and are higher in roots than in shoots. The behavior

of Cd in plants is closely related to Zn as both metals are bivalent cations with

a high affinity for sulfur, particularly sulphydryl groups. Some researchers have

reported on the association of Cd with other elements in plants (e.g., Zn, Cu, Se,

P, Cl) and have highlighted the key role of pH, carbonates, and organic carbon in Cd

soil bioavailability (Kabata-Pendias and Mukherjee 2007). The accumulation or

exclusion of Cd by plants differ at the family levels, but Brassicaceae and

Fabaceae species show the highest and the lowest tolerance to Cd, respectively

(Kabata-Pendias and Mukherjee 2007).

9.2.2 Copper

Copper is used for the production of conductor materials and in the manufacturing

of motors and electrical equipment, and for the fabrication of household articles,

coins, art objects and ammunition (Kabata-Pendias and Mukherjee 2007). Copper is

also widely used in agriculture (fertilizers, pesticides etc.) and, due to its bacterio-

static properties, it is also used as a feed additive in livestock and poultry nutrition.

The general values for the average total Cu contents in soils of different types are

reported to range between 20 and 30 mg kg�1. The phytoavailability of Cu is

influenced by its chemical form, and is not a function of its total concentration
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but of several soil variables, such as pH, oxidation and reduction potential,

organic matter, soil texture, mineral composition, temperature, and water regime.

Contaminated soils contain up to 5,000 mg kg�1 of Cu, whereas Cu content in plants

usually ranges from 3 to 15 mg kg�1. Plants growing on Cu-polluted sites tend to

accumulate increased amounts of this metal (up to 1,000–10,000 mg kg�1 in some

plants of the Labiatae family), especially near industrial areas, and in soils treated

with Cu-bearing herbicides. Copper is only slightly mobile in plants, as it is

strongly bound by nitrogen and proteins.

9.2.3 Zinc

Zinc is an important component of various alloys and is a catalyst in different

chemical productions (e.g., rubber, pigments, plastic, lubricants, and pesticides).

It is used in the industry of batteries, automotive equipment, medical applica-

tions, and pipes and household devices (Kabata-Pendias and Mukherjee 2007).

This metal, compared to Cd, has a relatively low toxicity for humans, but the

ingestion or inhalation of larger doses of Zn, especially in forms of inorganic

compounds, can be harmful to individuals. The micronutrient Zn has an essential

role in physiological and metabolic processes in plants as a cofactor or as

a structural element in 300 catalytic and noncatalytic proteins, but it is very toxic

when available in elevated amounts (van de Mortel et al. 2006). In uncontaminated

soils, Zn contents averages from 10 to 300 mg kg�1, and silicates, carbonates,

phosphates, oxides and organic matter may contribute to Zn retention. In strongly

contaminated soils, where Zn can reach levels from 1,000 to 10,000 mg kg�1,

the metal derives from atmospheric deposition, fertilizers, pesticides, sewage

sludge, leaching from galvanized materials, manure, waste, slag and ashes.

Contents of Zn in food plants varies in the range of 18–47 mg kg�1, and it is higher

in roots than in foliage. Sensitive terrestrial plants die when soil Zn concentration

exceeds 100–200 mg kg�1 soil, but some species are known to hyperaccumulate

Zn, as for example Thlaspi species that can contain above 10,000 mg Zn kg�1 and

were applied for the phytoremediation of contaminated soil (Sarret et al. 2002;

McGrath et al. 2006). The mobility of Zn within plants highly varies depending on

species and plants’ nutritional status.

9.3 Metal Uptake, Transport and Translocation

9.3.1 Occurrence of Metal Ions Throughout the Plant

As leaf Cd concentrations in excess of 5–10 mg g�1 dry matter are toxic to

most plants, they have evolved mechanisms to limit Cd translocation to the shoot

(Sanità di Toppi et al. 2003). Generally, the presence of Cd in the rhizosphere
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inhibits root elongation and influences root anatomy, but apoplastic movement

of Cd to the xylem can be restricted by the development of the exodermis,

endodermis, and other extracellular barriers (Lux et al. 2011).

Making use of nuclear microscopy techniques (NMP), Ager et al. (2002, 2003)

studied leaves of wild type and transformed lines of Arabidopsis overexpressing the
Atcys-3A gene (Domı́nguez-Solı́s et al. 2001) grown in a Cd-enriched Hoagland

medium. They proved that Cd is preferentially sequestered in the central region of

epidermal trichomes, where it is likely complexed to phosphate and sulfur. The fact

that Arabidopsis trichomes participate in metal detoxification has also been

suggested by Wienkoop et al. (2004), who identified proteins involved in sulfur

metabolism and detoxification in these cells by specific cell sampling and shotgun

peptide sequencing (nano LC/MS/MS). The preference for Cd localization in the

peripheral parts of leaf blades was confirmed by Wójcik and Tukiendorf (2004).

Van Belleghem et al. (2007) examined the subcellular Cd localization in roots

and leaves of Arabidopsis exposed to different Cd levels (from 0 to 50 mM) by

means of energy-dispersive X-ray microanalysis (EDXMA). They found that in the

root cortex Cd is associated with phosphorus (Cd/P) in the apoplast, and sulfur

(Cd/S) in the symplast, and that the transport route of Cd through the cortex is

mainly apoplastic. In the endodermis, where Cd transport is forced through

symplast, sequestration of Cd/S was present in cells as granular deposits. In the

central cylinder, Cd transport occurred mainly in the apoplast. Furthermore, large

amounts of precipitated Cd in the phloem suggest that Cd re-translocation from

the shoot occurs. In leaves, Cd was detected in tracheids but not in the mesophyll

tissue. Extensive symplastic and apoplastic sequestration in the root parenchyma

combined with re-translocation back to the roots via the phloem confirms the Cd-

excluder strategy of Arabidopsis. In Arabidopsis plants grown on Cd-containing

hydroponics (5–100 mM), examined by Wójcik and Tukiendorf (2004) using

EDXMA, Cd was not detectable in the cytoplasm, vacuoles and organelles within

roots or cell walls of tissues other than the pericycle, so confirming the preference

of the apoplastic route for Cd transport (Van Belleghem et al. 2007).

The situation in the hyperaccumulator species Thlaspi caerulescens, related to

Arabidopsis, is quite different, as Cd in roots is mainly located in cortex paren-

chyma cells, endodermis, parenchyma cells of the central cylinder and xylem

vessels, whereas in leaves it accumulates in the vacuoles of cells lying on the

way of water migration from the vascular cylinder to epidermal cells (Wójcik et al.

2005a, b). In this species, Cd is passively transported by the transpiration stream

and the mechanisms of Cd detoxification in roots seem to be both apoplastic and

symplastic.

Sarret et al. (2002) determined the chemical forms of Zn in the Zn-tolerant and

hyperaccumulator Arabidopsis halleri and in the non-tolerant and non-accumulator

Arabidopsis lyrata by combining chemical analyses and X-ray analyses. Plants

were grown with various Zn concentrations (100 and 250 mM ZnSO4). In aerial

parts of A. halleri, Zn was predominantly octahedrally coordinated and complexed

to malate. A secondary organic species was identified in the bases of the trichomes,
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which contained elevated Zn concentrations, and in which Zn was tetrahedrally

coordinated and complexed to carboxyl and/or hydroxyl functional groups.

Kashem et al. (2010) used A. halleri grown for 3 weeks in ZnSO4 levels

ranging from 0.2 to 2,000 mM. Plants proportionally absorbed Zn excess by roots

on the basis of the Zn concentration applied, but they did not show reductions

in shoot and root dry weight. The percentage of Zn translocation in shoot varied

from 69% to 90% of the total Zn, suggesting that the shoot was the major sink of

Zn accumulation in this species. The concentration of Zn found in shoots indicated

that A. halleri has an extraordinary ability to tolerate and accumulate Zn.

In the roots of A. halleri, Zn phosphate, Zn malate and Zn citrate were the three

Zn species detected. Zinc phosphate was mainly found in both the roots and

aerial part of A. lyrata – a non-accumulator species.

9.3.2 Metal Transporters in Uptake and Translocation

To absorb and translocate metal ions, plants utilize a large number of membrane

transporters (Wintz et al. 2003). P-type H+-pumps, the organellar proton

pumps and many ATP-binding cassette (ABC) proteins are primary active

transporters (Ludewig and Frommer 2002; Cobbett et al. 2003a, b) involved

in metal transport.

P1B-type ATPases transport metal ions (Cu+, Cu2+, Zn2+, Cd2+, Co2+, etc.) across

biological membranes in plants (Cobbett et al. 2003a, b). Arabidopsis is remarkable

for its large number of type 1B metal transporting ATPases if compared to other

organisms. It is likely that these transporters are involved in the metabolism of

Cu and Zn and possibly a third metal (Cobbett et al. 2003a, b). Among Arabidopsis
P-type pumps, HMA2 (Heavy Metal Associated 2 protein) is responsible for Zn2+

efflux from the cells and therefore is required for maintaining low cytoplasmic Zn

levels and normal Zn homeostasis (Eren and Arg€uello 2004). Observations indicate
a primary role for HMA2 and HMA4, whose expression is predominantly in the

vascular tissues of roots, stems, and leaves, in essential Zn translocation (Hussain

et al. 2004; Talke et al. 2006; Courbot et al. 2007). HMA2, has N- and C-terminal

domains that can bind Zn ions with high affinity (metal-binding domains, MBDs),

but only the N-terminal domain seems to be essential for functioning in planta
while the C-terminal domain may contain a signal important for the subcellular

localization of the protein (Wong et al. 2009; Zimmermann et al. 2009). Besides

being essential in Zn translocation, a nearly complete abolition of root-to-shoot Cd

translocation resulting from the loss of function of HMA2 and HMA4 in the

phytochelatin (PC) -deficient cad1-3 Arabidopsismutant indicates their importance

in Cd translocation in Arabidopsis (Wong and Cobbett 2009). Both hma2 and hma4
mutations also confer increased sensitivity to Cd in PC-deficient mutants of

Arabidopsis, suggesting that they may also influence Cd detoxification (Hussain

et al. 2004). Another protein of this family, HMA7, is involved in Cu+ transport.

While the MBD of HMA7 features a CxxC sequence motif characteristic for

246 A. Sofo et al.



Cu+ binding sites, those of HMA2 and HMA4 contain a CCxxE motif, unique for

plant Zn2+-ATPases (Zimmermann et al. 2009). HMA3, belonging to the P1B-2
subgroup, likely plays a role in the detoxification of biological (Zn) and non-biological

(Cd, Co and Pb) metals by participating in their vacuolar sequestration (Morel et al.

2009). Abdel-Ghany et al. (2005) identified two previously uncharacterized genes

(PAA1 and PAA2) coding for P-type ATPase in Arabidopsis, that are located in the

chloroplast and are required for sequential Cu transport over the envelope and

thylakoid membrane, respectively in order to foresee an efficient photosynthetic

electron transport. Another P-type ATPase gene of Arabidopsis is RAN1, involved
in Cu homeostasis (Hirayama et al. 1999). The ran1 mutants have a non-functional

ethylene response phenotype because the ethylene receptors are Cu-dependent

proteins.

ABC proteins mediate the transport of substances by coupling the release of

chemical energy stored in ATP to substrate translocation. An important ABC

protein involved in Cd transport, accumulation and tolerance is Arabidopsis
MRP7, localized both in the tonoplast and in the plasma membrane. The over-

expression of this transporter increases Cd-tolerance and results in enhanced Cd

root-to-shoot transport and accumulation in leaf vacuoles, indicating more efficient

detoxification (Wojas et al. 2009).

NRAMPs (natural resistance-associated macrophage proteins) have been char-

acterized in animals and plants as divalent transition metal transporters involved

in metal metabolism and host resistance to certain pathogens. In Arabidopsis, over-
expression of AtNramp3 and AtNramp4 results in Cd hypersensitivity and in Cd and
Fe accumulation. These genes are normally expressed in both roots and aerial parts,

and disruption of the AtNramp3 gene leads to slightly enhanced Cd resistance of

root growth (Thomine et al. 2000). For this reason, AtNramp genes likely encode

metal transporters of both the metal nutrient Fe and Cd. Furthermore, members of

the ZIP family, in particular, ZIP2 and ZIP4, are involved in Cu transport, whereas

AtOPT3 participates in the transport of various cations (Cu, Mn, Fe) (Wintz et al.

2003). Recently, Verbruggen et al. (2009) described and summarized exhaustively

the strategy that non-hyperaccumulator species like Arabidopsis use for Cd uptake

and accumulation. In Arabidopsis, the ZIP transporter IRT1 seems to be a main

entry for Cd.

Two members of the Arabidopsis Yellow Stripe-Like (YSL) family, AtYSL1
and AtYSL3 codify for two oligopeptide transporter families, predicted to be

integral membrane proteins involved in delivery of metal micronutrients to and

from vascular tissues (Waters et al. 2006). Indeed, leaf Fe concentrations are

decreased in the double mutant, whereas Mn, Zn, and especially Cu concentra-

tions are elevated, whereas in seeds of double-mutant plants, the concentrations of

Fe, Zn, and Cu are low. Haydon and Cobbett (2007) have identified Zn-sensitive

Arabidopsis mutants for the gene ZINC-INDUCED FACILITATOR 1 (ZIF1) that
encodes a member of the major facilitator superfamily (MFS) of membrane

proteins, one of the two largest families of membrane transporters found on

earth. Shoots of zif1 mutants showed increased accumulation of Zn but not of

other metal ions, and overexpression of ZIF1 confers increased Zn tolerance
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and interveinal leaf chlorosis, suggesting that ZIF1 is involved in a novel

mechanism of Zn sequestration, possibly by transport of Zn-ligand complexes

into vacuoles. van der Zaal et al. (1999) isolated a Zn transporter gene, ZAT1, and
observed that transgenic Arabidopsis plants in which ZAT1 was over-expressed

exhibited enhanced Zn accumulation in roots and increased Zn-tolerance. How-

ever, transgenic plants expressing an anti-sense construct showed no altered

phenotype. Finally, among further implicated proteins are IRT3 and ZIP10,

which have been proposed to contribute to cytoplasmic Zn influx in Arabidopsis
(Talke et al. 2006).

9.4 Metal Compartmentalization

9.4.1 Proteins and Transporters Involved in Metal Homeostasis

Different proteins and transporters are involved in Cd/Cu/Zn detoxification/

homeostasis in Arabidopsis. A complete inventory of Arabidopsis metallochaperone-

like proteins containing a predicted HMA domain revealed a large family of 67

proteins. In a recent study, Tehseen et al. (2010) found that 45 proteins, the HIPPs,

have a predicted isoprenylation site while 22 proteins, the HPPs, do not. Sequence

comparisons divided the proteins into seven major clusters (I–VII). Cluster IV is

notable for the presence of a conserved Asp residue before the CysXXCys, metal

binding motif. Promoter-GUS reporter expression analysis indicated variable

spatial expression of these HIPPs, but it is probable that HIPPs have a role in

Cd-detoxification, possibly by binding Cd.

Regarding Zn, AtMTP1 has been demonstrated to be a Zn transporter localized

in the vacuolar membrane and mediates Zn detoxification and storage by vacuolar

sequestration of Zn (Desbrosses-Fonrouge et al. 2005). AtMTP1 is not produced

throughout the plant, but primarily in the subpopulation of dividing, differentiating

and expanding cells, and contributes to cellular metal accumulation and to basal

metal tolerance in cells of growing tissues.

The main detoxification pathway of Cd in roots relies on phytochelatin (PC)

complexation (cfr. next section) and vacuolar transport of Cd–PCs complexes of

low molecular weight (LMW). In the vacuole, high molecular-weight complexes

(HMW) that contain sulphides (S2�) may be formed, but the stability of those

complexes is still not well understood. Cadmium can also be transported to

the vacuole by the activity of different transporters (cation exchangers, HMA3)

or as Cd-GS2 complexes by an unidentified ABC transporter, and part of the

vacuolar Cd(II) pool could be refluxed back into the cytosol by NRAMP activity.

Metallothioneins (MTs), a particular class of proteins later discussed in detail, can

also act as potential Cd ligands in the cytosol.
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9.4.2 Phytochelatins and Metallothioneins

Phytochelatins (PCs; general formula (g-Glu-Cys)nGly)), are polymerized chains

of glutamic acid and cysteine residues synthesised from reduced glutathione

(GSH) (g-Glu-Cys-Gly) in a reaction mediated by phytochelatin synthase (PCS)

(Cobbett 2000; Sanità di Toppi et al. 2003). They are a class of metal-binding

peptides playing an important role in metal homeostasis and detoxification, and

they represent a major detoxifying pathway for metals in plants and many other

organisms (Sanità di Toppi and Gabbrielli 1999; Wójcik and Tukiendorf 2004).

Moreover, Cd application induced the biosynthesis of PCs in root and shoot tissues

of Arabidopsis (Wójcik and Tukiendorf 2004; Połeć-Pawlak et al. 2005). On the

other hand, no PC accumulation was detected in Cd-treated Thlaspi caerulescens
plants (hyperaccumulator strategy), suggesting that naturally selected tolerance in

this species is not associated with enhanced PC synthesis (Wójcik et al. 2005a, b;

Verbruggen et al. 2009).

In Arabidopsis, Cd movement through the root symplast is restricted by the

production of PCs and the sequestration of Cd-chelates in vacuoles, and PC

deficiency resulted in an increase in shoot Cd concentrations (Wong and Cobbett

2009). Whether long-distance transport of PCs occurs during metal detoxification

remains unknown. The findings of Gong et al. (2003) and Chen et al. (2006) showed

that transgenic expression of TaPCS1 (a phytochelatin synthase gene from wheat)

in Arabidopsis suppresses the metal sensitivity of PC-deficient Arabidopsis mutants

cad1-3. The same authors demonstrated that PCs can be translocated from roots to

shoots, and that the transgenic expression of the TaPCS1 gene increases long-

distance root-to-shoot Cd transport and reduces Cd accumulation in roots.

The Arabidopsis CAD1 (¼ AtPCS1) gene encodes a PCS, and cad1 mutants are

phytochelatin deficient and Cd hypersensitive (Vatamaniuk et al. 1999; Peterson

and Olivier 2006). In Arabidopsis, the PCS1 activity is positively related to GSH

levels of up to 60 mM (depending on Cd levels), and it is enhanced if the concen-

tration of Cd(II) increases (with maximum activity at approximately 60 mM Cd,

depending on GSH levels). Arabidopsis PCS1 possesses a Cd(II) binding site where
Cd (II) binds to activate the enzyme, but it likely has also a second Cd(II) binding

site where Cd(II) binds to induce an inhibitory effect, as demonstrated by mathe-

matical models (Ogawa et al. 2011). Noteworthy, the Arabidopsis genome also

contains a highly homologous gene AtPCS2 that encodes a functional PCS appar-

ently non-redundant with AtPCS1 (Cazalé and Clemens 2001). Localization studies

of both Arabidopsis PCS forms, whose action is likely cytosolic, revealed a

ubiquitous presence of AtPCS1 in Arabidopsis seedlings, while AtPCS2 was only

detected in the root tip (Blum et al. 2010).

With an over-expression of Arabidopsis PC synthase gene (AtPCS1), a hyper-

sensitivity reaction due to the very high levels of PCs occurred in plants subjected to

Cd (50 or 85 mM CdCl2, and this hypersensitivity was also observed for Zn but not

for Cu (Lee et al. 2003a, b). The toxicity could be due to the depletion of GSH to

produce PCs or to the increasing energy request (ATP) due to the high PC chelation
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and storage in the vacuole. This indicates that PC homeostasis is of key importance

for metal chelation in Arabidopsis. The overexpression of the same Arabidopsis
gene in tobacco plants enhances Cd2+ tolerance and accumulation but only

when GSH is added to the culture medium (Pomponi et al. 2006), highlighting

the importance of GSH/PCs balance in the cells. In another study (Lee et al.

2003a, b), transgenic Arabidopsis lines were generated following transformation

with a construct containing the AtPCS1 cDNA under the control of the cauliflower

mosaic virus (CaMV) 35S promoter (35::AtPCS1). These plants exhibited ~14-fold
increase in the level of the AtPCS1 transcript. After being exposed to 85 mM CdCl2
for a 3-day period, ~30% increase in the level of PC production occurred in

transgenic lines if compared to wild-type, but transgenic lines showed higher

sensitivity to Cd than wild-type seedlings. In the same work, Arabidopsis plants
of other transgenic lines exhibited approximately two-fold increase in Cd tolerance

compared to wild-type plants. Surprisingly, these six Cd-tolerant lines, showing

only ~15% increase in PC content, presented increased Cd accumulation in their

shoots. In Cd-tolerant lines, the positive effect of PCmay be higher than its negative

effect; while, in Cd-hypersensitive transgenic lines the reverse may be true.

Lee et al. (2003a, b) concluded that PC has a positive effect in chelating non-

essential metals, while it has an unknown negative effect (e.g. chelating essential

metals or disrupting disulfide bond). The authors presume that the unknown toxic

effect of PCs may be similar to the toxic effects of both Cys and GSH, both

components of PCs, as these inhibit plant growth at supra-optimal concentrations.

Tennstedt et al. (2009) indicated a contribution of PCS expression to Zn2+

sequestration, using a known PC-deficient Arabidopsis mutants (cad1-3 and

cad1-6) with respect to Zn homeostasis. They found that PC-deficient mutants

show pronounced Zn2+ hypersensitivity and significant reduction in root Zn accu-

mulation. Plants grown under control conditions consistently showed PC2 accumu-

lation. Moreover, in wild type plants, Zn2+-elicited (20 mM for 5 days) PC2

accumulation in roots reached about 30% of the level of Cd2+-elicited (0.5 mM
for 5 days) PC2 accumulation, suggesting that PC formation is essential for Zn2+

tolerance and provides a driving force for the accumulation of Zn. This function

might also help explain the occurrence of PCS genes throughout the plant kingdom

and in a wide range of other organisms.

Wójcik et al. (2009) found that Cu (ranging from 5 to 50 mM) did not induce

phytochelatin accumulation nor significantly affected the GSH level in Arabidopsis
plants, but it caused changes in the root structure and leaf chloroplasts ultrastruc-

ture, suggesting that GSH is not directly involved in Cu detoxification and tolerance

in this species.

Metallothioneins (MTs) are proteins found in various eukaryotes having a low

molecular weight (less than 10 kD), a large fraction of cysteine residues, and a high

metal content with coordination of metal ions in metal-thiolate clusters (Cobbett

and Meagher 2002). In the Arabidopsis genome, seven functional MT genes have

been reported. However, exhaustive analysis of the genome sequence suggests

the presence of at least four additional MT genes (Cobbett and Meagher 2002).

It was also observed that MT gene expression in Arabidopsis could be induced
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by Cu and, to a lesser degree, by Zn and Cd. In a comparative study of different

Arabidopsis genotypes (Murphy and Taiz 1995), variation in Cu tolerance among

genotypes, measured by root growth inhibition, was highly correlated with the

expression of MT2a in Cu-treated plants. It seems that MTs in Arabidopsis
are able to play a role in metal tolerance, and their primary role may be in metal

homeostasis (Cobbett and Meagher 2002). In the study of Guo et al. (2008),

six Arabidopsis MTs (MT1a, MT2a, MT2b, MT3, MT4a, and MT4b) were

expressed in Cu- and Zn-sensitive yeast mutants. All four types of MTs provided

similar levels of Cu tolerance and accumulation to the yeast mutants, and the type-4

MTs (MT4a and MT4b) conferred greater Zn tolerance and higher accumulation of

Zn than other MTs to the mutants. To examine the functions of MTs in plants,

the authors studied Arabidopsis plants that lack MT1a and MT2b, demonstrating

that the lack of MT1a, but not MT2b, led to a 30% decrease in Cu accumulation in

roots of plants exposed to 30 mM CuSO4. Furthermore, when MT deficiency was

combined with PC deficiency, growth of the mt1a-2 mt2b-1 cad1-3 triple mutant

was more sensitive to Cu and Cd if compared to the cad1-3 mutant, suggesting that

MTs (and MT1a in particular) are important for plant metal homeostasis, and

that they function cooperatively with PCs to protect plants from Cu and Cd toxicity.

Zhigang et al. (2006) analysed the protective function of a plant type-2 MT after its

expression in Arabidopsis seedlings. When BjMT2 cDNA was expressed in

Arabidopsis under the regulation of the 35S promoter, seedlings exhibited an

increased tolerance against Cu2+ and Cd2+ based on shoot growth and chlorophyll

content. Analysis of transiently transformed cells of Arabidopsis leaves by confocal
laser scanning microscopy (CLSM) revealed exclusive cytosolic localization of

a BjMT2::EGFP (enhanced green fluorescent protein) fusion protein in control and

metal-exposed plant cells. Remarkably, ectopic expression of BjMT2 reduced root

growth in the absence of metal exposure, whereas in the presence of 50 or 100 mM
Cu2+ root growth in control and transgenic lines was identical.

9.5 Effects of the Cd, Cu and Zn at Different Biological

Organization Levels

9.5.1 Gene Expression

Different genomic and transcriptomic approaches have been used to investigate the

effects of metals on genomic and transcriptomic level (Hassinen et al. 2007).

Furthermore, data on genetic markers, analysis of quantitative trait loci and

microarray data are publicly available via TAIR (http://www.arabidopsis.org/),

where some of the datasets are related to metals. From a combination of these

data, it appears that a higher rate of cysteine biosynthesis is required in Arabidopsis
under Cd stress for a better plant protection or adaptation mechanism. In fact,

the transcription of some key genes for cysteine biosynthesis, such as Atcys-3A
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(cytosolic O-acetylserine(thiol)lyase) and SAT (serine acetyltransferase) gene

family, is significantly induced by exposure of Arabidopsis plants to Cd stress,

and this is accompanied by increases in cysteine and glutathione (GSH) levels

(Barroso et al. 1999; Dominguez-Solı́s et al. 2001; Howarth et al. 2003). As the

employment of cysteine-rich chelating compounds such as PCs is one of

the defense systems against toxic metals in plants, Harada et al. (2002) studied

Cd stressed (CdCl2 up to 200 mM for 4 h) Arabidopsis plants to investigate the

response of the genes involved in GSH biosynthesis. They found significant

increases in transcripts for ATP sulfurylase, APS reductase and sulfite reductase,

all of which are involved in cysteine synthesis, and in total thiols (mainly GSH,

PCs and cysteine), suggesting that under Cd stress, Arabidopsis activates the sulfur
assimilation pathway to provide an enhanced supply of GSH for PC biosynthesis.

AtATM3, an ATP-binding cassette transporter of Arabidopsis, is a mitochondrial

protein involved in the biogenesis of iron-sulfur clusters and iron homeostasis,

and its gene is upregulated in roots of plants treated with Cd2+ or Pb2+ (100 mM
CdCl2 or 1 mM Pb(NO3)2 for 24 h) (Kim et al. 2006). In addition, the authors found

that that AtATM3-overexpressing or AtATM3-constitutively-expressing plants are

more tolerant to Cd, whereas AtATM3 mutant plants were more sensitive to

Cd than their wild-type controls. Since non-protein thiols, such as GSH and PCs,

are positively correlated with metal resistance and the closest homolog of AtATM3

in fission yeast (Schizosaccharomyces pombe), HMT1, is a vacuolar membrane-

localized phytochelatin-Cd transporter, Kim et al. (2006) hypothesized that

GSH-Cd(II) complexes formed in the mitochondria are exported by AtATM3,

hence contributing to Cd resistance in Arabidopsis. Transcriptional regulation

in response to Cd treatment was also investigated in both roots and leaves

of Arabidopsis treated with low (5 mM) or high (50 mM) Cd concentrations for

2, 6, and 30 h, using a genome microarray (Herbette et al. 2006). One of the

main responses observed in roots was the induction of genes involved in sulfur

assimilation-reduction and GSH metabolism. In addition, HPLC analysis of

GSH and PC content showed a transient decrease of GSH after 2 and 6 h of metal

exposure in roots correlated with an increase of PC contents. Altogether, the results

suggested that plants subjected to Cd activate the sulfur assimilation pathway

by increasing transcription of related genes to provide an enhanced supply of

GSH for PC biosynthesis.

To understand the mechanisms of Cd-induced NO synthesis in roots and leaves

of Arabidopsis, a microarray analysis was performed by Besson-Bard et al. (2009)

in Cd-exposed plants (30 mM CdCl2 for 24 h). The authors found that NO

contributes to Cd toxicity by favoring Cd2+ versus Ca2+ root uptake and by

initiating a cellular pathway resembling those activated upon iron deprivation.

They identified 43 genes encoding proteins related to iron homeostasis, proteolysis,

nitrogen assimilation/metabolism, root growth, and transporters such as IRT1, that
encodes for a Cd, Mn, Zn and Co cation transporter (Korshunova et al. 1999;

Rogers et al. 2000).

To investigate the cellular responses of Arabidopsis to Zn, van de Mortel et al.

(2006) examined in detail the transcription profiles of roots of Arabidopsis plants
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grown with 0, 2 and 25 mM of Zn. A total of 608 Zn-responsive genes with at least

a three-fold difference in expression level were detected in response to changes in

Zn supply. A large fraction of these genes are of yet unknown function, but many of

them appear to be involved in metal homeostasis, abiotic stress response, and lignin

biosynthesis. In Cu-exposed Arabidopsis plants (1 mM CuSO4 for 30 min), Mira

et al. (2002) described two Cu-induced messengers encoding a vegetative storage

protein (VSP2) that could act as a temporary storage of amino acids during

processes in which these are mobilized, as it happens when plants are subjected

to severe oxidative stress.

To confirm transcript data obtained from e.g. microarray analysis or to study the

transcript levels of specific genes under metal stress, it is essential to perform quanti-

tative RT-PCRmeasurements. In this regard, Remans et al. (2008) used a strategy for

accurate normalisation of the measured gene expression using a minimum of three

reference genes [AT5G15710 (F-box protein), AT2G28390 (SAND family protein)

and AT5G08290 (mitosis protein YLS8)] in roots and leaves of Arabidopsis exposed
to Cd (2–10 mM) and Cu (0.5–2 mM) during 24 h. That metals induce oxidative stress

in plants was illustrated by the influence of Cd and/or Cu on ROS (reactive oxygen

species) producing and antioxidative defence mechanisms in Arabidopsis, addressed
by either induction or reduction of specific pro- and antioxidant gene transcripts

(Smeets et al. 2008, 2009; Remans et al. 2010; Cuypers et al. 2010).

9.5.2 Proteins

The effects of metals at the proteome level are less investigated, and extensive

proteomic studies to unravel the mechanisms of metal uptake and tolerance in

plants are yet to be completed. A significant proportion of the Arabidopsis genome

encodes membrane proteins, especially transport proteins and putative sensors that

cope with these conditions (Ludewig and Frommer 2002). Thus, the necessity to

regulate uptake of nutrient metals, many of which can be cytotoxic at high

concentrations, is particularly important.

Roth et al. (2006) found alterations in the root proteome of hydroponically

grown Arabidopsis plants exposed to 10 mM Cd2+ for 24 h, a condition that triggers

PC synthesis. Two dimensional gel electrophoresis and western analysis indicated

significant changes in protein abundance upon Cd2+ treatment. Most of the

identified proteins belong to four different classes: (1) metabolic enzymes such as

ATP sulfurylase, glycine hydroxymethyltransferase, and trehalose-6-phosphate

phosphatase; (2) glutathione S-transferases; (3) latex allergen-like proteins; and

(4) unknown proteins. Their results showed a selective enrichment of the protein

family glutathione S-transferases, suggesting the generation of internal sinks for

reduced sulfur after exposure of plants to Cd. On the other hand, Semane et al.

(2010) studied the leaf proteome of 3-week-old Arabidopsis seedlings exposed for

1 week to 1 mM Cd. Their data indicated that plants adapted their metabolism to

cope with the Cd exposure and only moderate protein changes were observed,

9 Biochemical and Functional Responses of Arabidopsis thaliana Exposed. . . 253



whereas at higher levels (10 mM Cd) growth reduction, chlorosis of rosette leaves,

lipid peroxidation and enhanced peroxidase activity occurred. In particular,

21 proteins were up-regulated in response to Cd, functionally grouped into five

classes: (1) proteins involved in oxidative stress response and GSH/PC metabolism,

(2) photosynthesis and energy production, (3) protein metabolism, (4) gene expres-

sion, and (5) proteins with various or unknown function.

Kung et al. (2006) screened for copper-interacting proteins in Arabidopsis
roots via copper-immobilized metal affinity chromatography (Cu-IMAC). They

identified 35 proteins involved in redox/hydrolytic reactions, amino acid meta-

bolism, glutathione metabolism, phosphorylation, translation machinery, membrane-

associated proteins, and vegetative storage proteins. Finally, they predicted and

scored six potential Cu- interacting motifs present in Cu-IMAC-isolated pro-

teins with higher frequency than in the whole Arabidopsis proteome. To under-

stand better Zn-responsive proteins, Fukao et al. (2009) investigated Zn-treated

(300 mM ZnSO4), Arabidopsis roots. Ten up-regulated and 17 down-regulated

proteins were identified, 15 of which showed a significant correlation with previ-

ously reported transcriptomic data.

Besides an open screening for changes in protein abundance under metal stress,

also studies on specific proteins are conducted. Li et al. (2010) suggested that

NRT1.8 functions in the removal of nitrate from xylem vessels. Indeed, long-

distance transport of nitrate requires xylem loading and unloading, a successive

process that determines nitrate distribution and subsequent assimilation efficiency.

Interestingly, NRT1.8 appeared to be the only nitrate assimilatory pathway gene

that was observed to be strongly up-regulated by Cd2+ in roots, and the nrt1.8-1
mutant showed a nitrate-dependent Cd2+-sensitive phenotype. Further analyses

showed that Cd2+ stress increases the proportion of nitrate allocated to wild-type

roots compared with the nrt1.8-1 mutant. The NRT1.8 transporter likely plays an

important role in protecting the plant against Cd toxicity, and possibly against

a wide range of biotic and abiotic stresses (Gojon and Gaymard 2010).

9.5.3 Phytohormones

Arabidopsis plants exposed to stress caused by metals often resemble, in terms of

the redistribution of growth, plants altered in phytohormone metabolism (Pasternak

et al. 2005; Kai et al. 2007).

Indole-3-acetic acid (IAA) and its metabolites are the most widely auxins in plants

(Hansen and Halkier 2007; Kai et al. 2007; Ludwig-M€uller 2007). Key components

of the cell cycle and signal-transduction pathways that promote and attenuate auxin-

dependent lateral roots initiation have been identified in Arabidopsis (Casimiro et al.

2003). Pasternak et al. (2005) observed that in Arabidopsis Cu-exposed plants (30 up
to 100 mM CuSO4) root hair density was significantly increased and an acceleration

of the emergence of lateral roots occurred. These authors observed that phenotypes of

Arabidopsis plants exposed to CuSO4 resemble plants altered in auxin metabolism.
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Significant morphological changes (degree of root branching and number of root

hairs) together with increased IAA root levels were found by Sofo et al. (unpublished

data) in roots of Arabidopsis plants exposed to Cd, Cu and Zn, applied separately or

in different combinations (Fig. 9.2). Map-based cloning was used to find the ILR2
gene that affects IAA-leucine resistance in the Arabidopsis ilr2-1 mutant (Magidin

et al. 2003). This gene encodes a protein that is polymorphic among Arabidopsis
accessions and it was found to modulate a metal transporter, thus providing a link

between auxin-conjugate metabolism and metal homeostasis. Considerable effort

has also been directed at clarifying the processes and factors contributing to IAA

homeostasis during metal exposure, but the entire picture remains to be elucidated,

Fig. 9.2 Seedlings of Arabidopsis thaliana not exposed to metals (control (a), and exposed for

12 days to 10 mM Cd (b), 5 mM Cu (c) and 150 mM Zn (d)) (Source: A. Sofo)
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as IAA synthesis is regulated in response to different and complex signaling

pathways (Hansen and Halkier 2007).

Another class of hormones, cytokinins (CKs) are implied in meristem activity,

de novo bud formation, release from apical dominance, leaf expansion, reproduc-

tive development, and senescence. In many plant species, moderately high Cd

levels (5–50 mM) and longer exposures to Cd (3 weeks) significantly decreases

cytokinin export from the root tips to the shoot (Prasad 1995). In Arabidopsis plants
grown in the presence of Cd, Cu and Zn, applied separately or in different

combinations, reduced CKs levels in shoots, associated to CKs increases in roots,

were observed by Sofo et al. (unpublished data) (Fig. 9.2). Since in Arabidopsis the
genes encoding ATP/ADP isopentenyltransferases and tRNA isopentenyl-

transferases (ipt) and/or the activities of the corresponding enzymes (IPTs) are of

basic importance in CK biosynthesis (Miyawaki et al. 2006), the application

of metals likely could up-regulate the transcription of these genes.

In Arabidopsis, Cd-induced inhibitory effects were reported to be concomitant

with an increase in endogenous abscisic acid (ABA) levels in plant tissues

indicating the possibility of this phytohormone mediating a part of the metal-

imposed phytotoxicity (Sharma and Kumar 2002). Furthermore, it was observed

that Cu or Cd applied on Arabidopsis seedlings, causes a rapid increase of jasmonic

acid, followed by a rapid decrease observed during 7 successive hours (Maksymiec

et al. 2005), so indicating that jasmonic acid is connected with the mechanism

of toxic action of both metals in plants. Interestingly, jasmonic acid applied on

Arabidopsis seedlings exposed to Cu or Cd (100 mM up to 144 h) enhances their

sensitivity to these metals, in terms of reductions of membrane peroxidation and

quantum yield of PSII, so demonstrating an important role of jasmonic acid in metal

stress signaling (Maksymiec et al. 2007). Indeed, salicylhydroxamate and propyl

gallate, two inhibitors of jasmonic acid synthesis, are able to prevent some delete-

rious inhibitory effect of Cu and Cd in Arabidopsis (Maksymiec and Krupa 2002).

Finally, Cu and Cd, but not Zn, were found to elicit the greatest amount of

ethylene produced by Arabidopsis plants (Arteca and Arteca 2007). These authors

found that inflorescence stalks and root tips produced the greatest amount of

ethylene in response to CuSO4 or CdSO4 over a range of concentrations from 0 to

800 mM, whereas all other plant parts tested released significantly lower levels.

It was found that increasing leaf age, light and high temperatures caused a dramatic

decrease in Cu/Cd-induced ethylene production in both inflorescence stalks and

leaves of Arabidopsis.

9.6 The Multi-pollution Context

Monometallic exposure is very unusual in real-world situations, so it is very

important to study both the metal-specific effects and the mechanisms induced

when the plants are exposed to more metals simultaneously (Smeets et al. 2009).

In fact, the combined exposure to more metals could enhance some of the effects

256 A. Sofo et al.



that are induced with only one metal. Moreover, it can happen that plants able to

hyperaccumulate some metals without showing any physiological damage, can be

strongly susceptible to other ones (Mijovilovich et al. 2009). For instance, seed is

a developmental stage that is highly protected against external stresses in the plant

life cycle. However the toxicity of Cu, Zn and particularly Cd, alone or in combi-

nation, on seed germination in Arabidopsis was proven (Li et al. 2005). The same

authors highlighted that Cu and Zn are significantly less effective on reducing

seedling growth when compared to Cd.

The studies on Arabidopsis plants subjected simultaneously to different metals

are quite scarce. In one of these studies from Maksymiec and Krupa (2006),

a considerable increase of hydrogen peroxide accumulation and superoxide radicals

was observed during the first hours of exposure of plants to excess Cu and Cd

(100 mM CuSO4 and CdSO4). Furthermore, excess Cd, in contrast to Cu, increased

the SOD activity. The metal-induced oxidative stress was also confirmed by other

studies. Smeets et al. (2009) observed a specific Cd-related induction of NADPH

oxidases and metal-specific patterns of superoxide dismutases in 3-week-old

Arabidopsis seedlings exposed to Cu and/or Cd (10 mM CdSO4 and CuSO4)

for 24 h. Both metals induced gene expression of several H2O2-quenching enzymes

and lipid peroxidation possibly by the activation of lipoxygenases. Skórzyńska-

Polit et al. (2006) studied the activity and cellular localization of lipoxygenases

(LOX) in Arabidopsis plants grown under excess Cd and Cu (both at 0, 5, and

50 mM) in solution cultures for 7 days. LOX was localized mainly in the cytoplasm

as well as inside the chloroplasts and its activity was significantly higher in metal-

exposed plants than in control plants. Moreover, the authors observed that the

changes in ultra-structure of the leaf parenchyma cells were more evident in plants

treated with Cd than those exposed to Cu. LOXs are particularly important during

oxidative-stress responses, as they catalyse the dioxygenation of polyunsaturated

fatty acids containing a cis, cis-1,4-pentadiene backbone, producing hydroperoxy

fatty acids, which are highly reactive compounds that are toxic to cells, but are also

precursors of oxylipin signalling molecules like jasmonates.

9.7 Conclusions and Perspectives

Understanding the metabolic responses and the adaptation of plants towards

metal exposure opens the way to future phytoremediation of contaminated soils.

The majority of these metals accumulate in plants and may either directly or

indirectly find their way into the food chain causing severe secondary consequences.

For this reason, phytoremediation has been accepted advantageous over commonly

used physical remediation methods in costs, practice and the scale at which the

processes operate. Usually, fast growing plants of high biomass are considered

potential candidates for toxic metal accumulation but may be hampered with

significant tolerance capacity, limiting their use for phytoremediation purposes.

Identifying the particular gene(s) underlying a specific adaptation to metals is
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a major challenge in modern biology (Roosens et al. 2008). Therefore, the study of

naturally occurring variation in Arabidopsis provides a bridge between functional

genetics and evolutionary analyses. Nevertheless, the use of this species to study

adaptation is limited to those traits in common with other plant species used for

phytoremediation. Therefore, in order to fully understand the genetics of adaptation

of plants to metals, the numerous and easily available genetic resources developed in

Arabidopsis thaliana should be extended to other plant species.
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